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Abstract
Thin wire structures are commonly used as ‘metamaterials’ for simulating the negative
electrical response of a plasma. In this they are only partially successful: transverse modes are
convincingly reproduced but problems arise from highly dispersive longitudinal modes which
can be excited by externally incident radiation and impair the validity of the simple local plasma
model. We show how modified designs can essentially eliminate the longitudinal dispersion and
restore the simple local model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electromagnetic properties of homogeneous materials are
described by the electrical permittivity, ε, and magnetic
permeability, μ. This description admits anisotropic materials
in which case ε and μ are tensor quantities, and also dispersion
when one or both of ε and μ may depend on frequency.
The electric and magnetic fields concerned are recognized
to be averages over their microscopic values. Recently this
description has been extended to a new class of materials,
metamaterials, where the microscopic structure is on a larger
scale than the atomic. If the microstructure is much less than
a wavelength in scale we can still speak of a local average
for fields and a description in terms of ε and μ may again
be appropriate. Creating novel electromagnetic properties
through structured media gives access to a whole new range
of phenomena. Prominent amongst these is negative refraction
which as Veselago predicted [1] is realized when both electric
and magnetic responses are negative:

ε < 0, μ < 0. (1)

At microwave frequencies, structured media, otherwise known
as metamaterials, are generally deployed to achieve this
condition.

The electron plasma in a metal typically has a response of
the form [2, 3],

ε = 1 − ω2
p

ω(ω + iγ )
(2)

where ωp is the natural resonant frequency of the electron
gas, γ represents resistive losses in the system and ω is the

frequency of the wave. We can express ωp in terms of the
electron density, n, the electronic charge, e, and mass, me [3],

ω2
p = ne2

ε0me
= (c0kp)

2 (3)

where kp is the wavevector corresponding to ωp. For typical
metals ωp lies in the optical or UV region of the spectrum.
Figure 1 shows in dotted and dashed lines the resulting
dispersion for transverse and longitudinal modes respectively,
for an electron plasma in a metal.

To create a negative electric response at microwave
frequencies, an artificial plasma is created from a wire
structure [2–8] in which all dimensions are less than the
wavelength. A typical wire structure is shown in figure 2(a),
where thin connected wires, of radius r , are placed in a
cubic lattice with periodicity a (i.e. the lattice constant). The
wires are along the three orthogonal axes and the radius of
the wires is much smaller than the periodicity (i.e. r � a).
The wires leave electrons free to move whilst reducing their
effective density. Also thin wires possess a large inductance
which acts like an effective mass. Equation (3) then predicts
a considerable reduction in the plasma frequency. Ideally
these structures can be modelled by a local effective dielectric
response of conventional plasma form, shown in (2), but in
practice complications arise.

The simple analysis leading to equation (2) is valid when
the electric field is parallel to one of the three sets of wires,
but it has been shown that important corrections are needed
when the field is not parallel to the wires [9]. These corrections
spoil the simple picture of a local medium and replace it with a
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Figure 1. Dispersion of radiation in a plasma. In the ideal case two
degenerate transverse modes (dotted line) disperse as

ω = c0

√
k2

p + q2 where kp = ωp/c0 (i.e. the wavevector

corresponding to the plasma frequency) and in addition there is a
dispersionless longitudinal mode (dashed line), ω = c0kp = ωp. In
wire structures designed to imitate an ideal plasma the longitudinal

mode (full line) is dispersive: ω = c0

√
k2

p + q2/3, where q is the

wavevector in the structure.

more complex picture in which the dielectric response depends
strongly on the wavevector, i.e. the medium is non-local. The
dispersion of the longitudinal mode is shown in figure 1 with
the full line. This renders the wire structures much less useful
as metamaterials, because of the resulting complex response to
incident fields.

In this paper, first we present a simple argument that
reproduces the results of earlier work and identifies the source
of the problem, and then go on to propose modifications to
the wire structure that minimize the dispersion and result in an
effectively local dielectric response.

As we shall show, the problem lies in the very small
capacitance of the wires, which comes into play whenever
charge accumulates on the wires. For a transverse wave with
electric fields parallel to the wires no charge accumulates
and the wire capacitance is irrelevant, hence (2) provides a
satisfactory description. If the three sets of wires shown in
figure 2(a) are not joined at the nodes a problem arises as soon
as the electric fields stray from the parallel case, because then
the currents flowing would be required to leap from one wire to
the next and the lack of capacitative coupling, strongly inhibits
this flow. A true plasma in which electrons are free to move
in any direction does not suffer from this limitation. Hence the
extreme non-locality found in disconnected systems.

Joining wires at the nodes fixes this particular problem,
but others remain. Implicit in equation (2) is the assumption
that there exists a longitudinal mode (the bulk plasmon) that
is degenerate for all wavevectors and to a good approximation
this is true for the electron plasma in a metal. A longitudinal
mode implies periodic accumulation of charge resulting from
the non-zero divergence of the electric field,

∇ · E exp(iq · r − iωt) = q · E0 exp(iq · r − iωt) �= 0 (4)

where E and q are the electric field and the wavevector in
the wire metamaterial, respectively. Evidently the bigger q

gets the more charge there is. In the wire structures this

(a) (b)

Figure 2. (a) A lattice of metallic wires mimics the properties of a
true plasma provided that the lattice constant, a, is much less than the
wavelength of incident radiation. Note that in this example the wires
are joined at the nodes, where r0 is the radius of the wires and a the
lattice constant. (b) The wires are aligned with the three orthogonal
axes and the translation from orthogonal to spherical coordinates is
shown, where θ and φ angles are shown.

charge has to be parked on the wires which due to their
low capacitance costs a lot of energy and in turn forces up
the frequency with increasing q. In a wire structure, far
from showing no dispersion, longitudinal modes are highly
dispersive implying strong non-locality of the system and
invalidating (2). Longitudinal modes cannot be excited if the
permittivity is independent of q. This necessarily implies that
the frequency of the longitudinal mode (ωL) is independent
of q and ε(ωL) = 0 (i.e. the propagation velocity is zero-
vg = dωL/dq = 0). Dispersion introduces the complication
that both longitudinal and transverse modes can be excited and
convey energy into the material.

We show that there are two ways to fix this problem. Either
we can increase the capacitance of the wires, for example
by adding plates to the structure, thus minimizing dispersion.
Alternatively we can increase the inductance of the wires
which reduces the ratio of capacitative to inductive impedance.
Both these approaches greatly minimize the dispersion of the
longitudinal mode and lead to a material in which a simple
local expression accurately describes the response to incident
radiation.

2. Thin connected wires in 3D

Consider a lattice of wires arranged in a simple cubic a ×a ×a
pattern shown in figure 2(a). We seek self-consistent solutions
of Maxwell’s equations where the currents in the wires support
the surrounding field. The current flowing in a wire oriented in
the x- direction and located at lattice point Y Z , is:

I x̂ sin θ cos φ exp(iqx x + iqyY + iqz Z − iωt) (5)

where θ and φ are shown in figure 2(b) and Y , Z are
the coordinates of the wire in question in the y–z plane.
Corresponding expressions hold for the other two sets of wires.
As a first approximation, to be corrected later, we average the
current density over the three sets of wires,

j ′ = Ia−2(x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ)

× exp(iqx x + iqy y + iqzz − iωt)

= j0a−2 exp(iqx x + iqy y + iqzz − iωt) (6)

2



J. Phys.: Condens. Matter 20 (2008) 295222 A Demetriadou and J B Pendry

where,

j0 = I (x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ) (7)

and the average charge is,

ρ ′ = j0 · q

a2ω
exp(iqx x + iqy y + iqzz − iωt). (8)

From Maxwell equations:

∇ · E = ρ ′/ε0 and ∇ × B − 1

c2
0

∂E

∂ t
= μ0j

′ (9)

and using the definition of vector potential A (i.e. B = ∇×A)
and of scalar potential φ (i.e. E = − ∂A

∂ t − ∇φ) and by
considering the gauge of A through Lorentz condition in free
space (i.e. ∇ · A+ 1

c2
0

∂φ

∂ t = 0), two differential equations for A

and φ emerge:

∇2A − 1

c2
0

∂2A

∂ t2
= −μ0j

′ (10)

∇2φ − 1

c2
0

∂2φ

∂ t2
= −ρ ′

ε0
(11)

which can be solved by assuming A = A0 exp(iqx x + iqy y +
iqzz − iωt) and φ = φ0 exp(iqx x + iqy y + iqzz − iωt) and give
the average fields of A and φ:

A = μ0j0

(q2 − k2
0)a

2
exp(iqx x + iqy y + iqzz − iωt)

φ = j0 · q

(q2 − k2
0)ε0ωa2

exp(iqx x + iqy y + iqzz − iωt).

(12)

Hence,

B = iq × A = iμ0q × j0

(q2 − k2
0)a

2
exp(iqx x + iqy y + iqzz − iωt)

(13)

E = iωA − iqφ =
[

iωμ0j0 − iq
j0 · q

ε0ω

]
1

(q2 − k2
0)a

2

× exp(iqx x + iqy y + iqzz − iωt). (14)

If we assume the wires to be perfect conductors, the parallel
component of the field at the wires must be zero. For wires
in, say, the x-direction comprise Ex , the smooth averaged
contribution shown above in (14), and the local fluctuations
which will be very strong close to the wire in question. The
average current, j ′ and the associated average fields will be
essentially constant over the unit cell, but the actual current
is of course concentrated on the wires. We make a further
approximation that instead of the current in each wire being
surrounded by a square cell of neutralizing averaged current
we redistribute this current uniformly over a circle of the same
area. A valid assumption since the average fields can also be
supported from the redistributed uniform current (i.e. which is
equal to j ′). This assumption makes the local field easy to
calculate since it consists of only the field of the central current
and its neutralizing cloud.

If the wires are joined at the nodes so that the charge is
equally distributed between the x , y, z wires, the deviation
from the average electric field calculated at the surface of an
x-wire is:

	Ex =
[

Cqx − k2
0 j0x

4k0

]√
μ0

ε0
i

2

π
ln

(
a

r0
√

π

)
eiqx x−iωt (15)

where we have borrowed the expression from [9]. The first
term in square brackets is due to the charge accumulation on
the wires,

C = q · j0

12k0
. (16)

The second term is due to the current working against the
inductance of the wires. Requiring that the field at the surface
of the wire is zero,

[
k2

0 j0x − qxq · j0
] 1

(q2 − k2
0)

+ k2
0 j0x

k2
p

− Cqx
4k0

k2
p

= 0 (17)

where,

k2
p = 2π

a2 ln
(

a
r
√

π

) (18)

is the wavevector associated with the plasma frequency
in (3). A more accurate approach for the plasma wavevector,
accounting for the contributions from the neighbouring wires
and the lattice geometry is discussed by Belov et al [10, 11].

For the two transverse modes qT · j0 = 0 and hence
from (17),

k2
0 = q2

T + k2
p ⇒ ω = c0

√
q2

T + k2
p. (19)

On the other hand the longitudinal solution corresponds to
qL × j0 = 0 and hence from (17)

q · j0
[
k2

0 − q2
L

] 1

(q2
L − k2

0)
+ k2

0q · j0

k2
p

− Cq2
L

4k0

k2
p

= 0. (20)

The last term in (20) originates from the charge on the wires
and if we neglect its effect, C = 0, then, (20) gives,

k2
0 = k2

p ⇒ ω = c0kp (21)

which is the ideal dispersionless longitudinal mode we should
like to have. However including the corrections for charging
gives,

k2
0 = q2

L/3 + k2
p ⇒ ω = c0

√
q2

L/3 + k2
p . (22)

Note that the longitudinal and transverse plasma frequencies
coincide as q → 0 as required. Figure 1 shows the dispersion
of the longitudinal and the transverse modes for q → 0.

However, one may be concerned about the skin effect on
the wires and its impact on the above dispersion equations for
the wire mesh. The skin effect is determined by the penetration
depth of the wave in the conducting wires (i.e. skin depth

δ =
√

2
μσω

, where μ and σ are the permeability and the

conductivity of the wires respectively and ω is the frequency
of the oscillating field). In this paper, all calculations and
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Figure 3. The band structure for r :a = 0.01:1 (wire’s radius):(lattice constant) (where (0, 0, 0), X(0, 0, π/a), M(0, π/a, π/a),
R(π/a, π/a, π/a)). The black dashed lines are the plots of (19) and (22) for the transverse and the longitudinal modes, respectively.

simulations were performed for perfectly conducting wires
(i.e. infinite conductivity and no losses for the wires), and
consequently δ is negligible, which means that the current is
constrained to flow on the surface of the wires. This is also
valid for good conductors in the microwave spectrum, where
the skin depth is negligibly small. More generally, for thin
wires with r0 � a and skin depth smaller than the radius
of the wires (i.e. δ < r0), the dispersion behaviour of a wire
metamaterial is independent of the skin effect and the plasma
frequency (ωp) depends only on the crystal structure (r0 and a),
as proven by [12] and [13], and is given by ωp = ckp (where
kp is given by (18)).

We have shown in this section that, although wire
structures support transverse modes consistent with the
plasmon model of dielectric response, they also support
dispersive longitudinal modes making their response to
external radiation more complex than a simple plasma. In
some situations this is a useful property but for the most
part metamaterial structures are required to simulate a local
dielectric response with dispersionless longitudinal modes. We
shall show that dispersion can be minimized by targeting
the capacitance of the wires, or alternatively increasing their
inductance so that the capacitative impedance can be neglected.

2.1. Permittivity tensors

Causality requires that all materials are dispersive [11].
Usually, the dispersive behaviour of materials can be
effectively described using just the local model for the
permittivity and permeability tensors, and the non-local model
is considered as a small effect meaningful only in the large
wavevector limit. However, it is well known that spatial
dispersion exist in a 2D array of wires (i.e. a parallel-wire
structure), even in the large wavelength limit [11]. Similarly,
spatial dispersion is a significant effect in a 3D wire-mesh
structure for the longitudinal mode, implying the need for a
non-local model to homogenize the wire mesh. On the other
hand, for the transverse mode no charge is accumulated on the
wires, and therefore a local model can be used.

The local transverse permittivity element is given by:

εT = ε0

(
1 − k2

p

k2
0

)
(23)

which depends just on the frequency of the radiation wave, and
the longitudinal non-local permittivity element is given by:

εL = ε0

(
q2 − 3k2

0 + 3k2
p

q2 − 3k2
0

)
= ε0

(
1 − 3k2

p

3k2
0 − q2

)
(24)

which depends on both the frequency and the spatial
components of the wavevector (analytical derivation is shown
in appendix A). Note that the zeros of (24) give the dispersion
equation for the longitudinal mode. Therefore, two different
permittivity tensors are needed, depending on the wave’s
polarization.

2.2. Reflection coefficients

The difference between the local and the non-local models can
be easily observed by calculating the reflection coefficients
for each model. Consider a P-polarized wave1 incident to a
semi-infinite slab of a wire-mesh medium. Then, the non-local
reflection coefficient is given by:

Rnon−loc =
qzqLz(k2

0 − k2
p) −

[
qTzqLzk2

0 + q2
x k2

p

]

qzqLz(k2
0 − k2

p) +
[
qTzqLzk2

0 + q2
x k2

p

] (25)

where q2
Lz = 3(k2

0−k2
p)−(q2

Lx+q2
Ly) is the z-axis component of

the longitudinal wavevector and q2
Tz = k2

0 − k2
p − (q2

Tx +q2
Ty) is

the z-axis component of the transverse wavevector. Derivation
of equation (25) can be seen in appendix B. The reflection
coefficient can be reduced to the local model by considering
the limit of qLz → ∞:

Rloc = lim
qLz→∞ Rnon−loc = qzε(ω) − qTz

qzε(ω) + qTz
(26)

where ε(ω) = εT(ω) = 1− k2
p

k2
0
. Equations (25) and (26) predict

different results for the reflection coefficient, where the local
model falsely ignores the propagation of the longitudinal mode
in the wire medium.
1 A P-polarized wave has the electric field in the plane of incidence. The plane
of incidence is defined by the direction of propagation (i.e. the wavevector)
and the normal of the reflecting surface. Sometimes the P-polarized wave are
referred to as transverse-magnetic (TM) waves. S-polarized waves have the
electric field perpendicular to the plane of incidence and are often referred to
as transverse-electric (TE) waves.
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Figure 4. The modulus of the reflection coefficient for the wire-mesh metamaterials for various angles of incidence. S-polarized wave
(i.e. dotted line) and P-polarized wave (i.e. full line): left figure—θ = 0◦, right figure—θ = 45◦.

Using CST Microwave studio, the band structure of the
wire mesh (r/a = 0.01) shown in figure 2 and the reflection
coefficient for a finite slab of five unit cells (i.e. d = 5a
and r/a = 0.01) were calculated. The results are shown in
figures 3 and 4 respectively. In figure 3, a doubly degenerate
transverse mode is shown and the dispersion of the longitudinal
mode can be seen, which is clearly significant. Also, the
dispersion equations shown in (19) and (22) for the transverse
and the longitudinal modes respectively, are plotted with black
dashed lines, and their agreement with the simulation results
is significant (especially for q → 0). Also, two degenerate
quadrupole modes, not predicted in theory, arise (at ∼35 GHz),
due to the orthogonal structure of the wire mesh. It is worth
mentioning that there are just two independent quadrupole
modes.

In figure 4, the reflection coefficient is shown for wires
in a loss-free hosting medium. The longitudinal mode is
excited for the P-polarized wave and for non-normal angles
of incidence (θ �= 0). The contribution of the longitudinal
mode in the interference pattern is significant and the effect
of spatial dispersion clear. Since the longitudinal mode is not
excited for the S-polarized wave, a comparison between the
interference pattern of the two waves can indicate the effect of
spatial dispersion on the wire system.

3. New structures

In this paper, new wire structures are proposed, that manage to
eliminate the effect of spatial dispersion for the wire mesh. As
mentioned before, spatial dispersion arises from the periodic
charge accumulation in the wires. There are two main ways to
avoid spatial dispersion for the wire-mesh metamaterial. Either
increase the capacitance of the system, by attaching conducting
structures on the wires (i.e. conducting plates, spheres, cubes,
cylinders etc.), or increase the inductance of the system, by
coating the wires with a magnetic material.

However, by changing the structure of the wire mesh,
the effective permittivity elements change as well. In order
to model these various complex wire structures and calculate
their dependence on spatial dispersion, the method described
by Shapiro et al [14] was used. He modelled the wire-
mesh structure as a ‘cubic crystal with spatial dispersion’

and expressed the permittivity tensors with respect to the
calculated band structure. This method can be expanded
and used for modelling the permittivity tensors for any wire
structure, provided that its band structure is given. Therefore,
the permittivity element describing the behaviour of any wire
structure to incident radiation along one of the wires (e.g. z-
wire) are given by:

εT = β

(
1 − k2

p

k2
0

)
+ α2

q2
z

k2
0

εL = β

(
1 − k2

p

k2
0

)
+ α1

q2
z

k2
0

(27)

where β is a coefficient accounting for the polarization of
the attached structures on the wires (β = 1 for just the
wire mesh-no structures) and α1, α2 are frequency dependent
spatial dispersion coefficients, determining the dependence
of the permittivity tensor on the spatial component of the
wavevector. The coefficients α1 and α2 can be determined by
fitting the calculated band structures to equation (28), for the
small wavevector limit (i.e. q → 0) [14]:

ω2 = ω2
p + Aq2c2 (28)

where A is a constant. For the longitudinal mode: A = −α1/β

and for the transverse modes: A = (1 − α2)/β . α1 and α2 also
depend on the dimensions of the lattice and the wires.

As an example, consider the wire-mesh structure shown
in figure 2 (with r/a = 0.01). From its band structure
(i.e. Figure 3) the spatial dispersion coefficients have values:
α1 = −0.307 and α2 = 0.035. This means that the spatial
dispersion for the transverse mode is determined by α2, which
is negligible for r � a and therefore the permittivity tensor
is given by (23). On the other hand, the spatial dependence
of the longitudinal permittivity tensor will be dominated by
α1, which is significant for the wire-mesh structure, even for
r � a. Therefore, the new structures should have negligible
values for both α1 and α2.

3.1. Increasing the capacitance of the structure

As mentioned before, a way to avoid spatial dispersion in
the wire mesh is to increase its capacitance by attaching

5
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Figure 5. (a) The wire mesh with cubes attached at the joints, (b) α1 and α2 coefficients are plotted against the dimensions of the cube, where
x is the side of the cube, a is the lattice constant and r/a = 0.01 for all the calculations, (c) the band structure for r :x:a = 0.01:0.5:1 (wire’s
radius):(side of cube):(lattice constant) (where (0, 0, 0), X(0, 0, π/a), M(0, π/a, π/a), R(π/a, π/a, π/a)).

Figure 6. The modulus of the reflection coefficient for the structure shown in figure 5. Both the S-polarized (dashed line) and the P-polarized
waves (full line) are shown for various angles of incidence. Also, the reflection coefficient was calculated for both a loss-free hosting medium
(top graphs) and a lossy medium in order to simulate a real material (bottom graphs).

conducting structures on the wires. Therefore, the charge
accumulated on the wires of the wire mesh, causing spatial
dispersion, will now be distributed on the attached conducting
structures leaving the plasma-like behaviour of the wires
unaffected. Various structures have been tested and all
showed significant reduction of spatial dispersion. However,
the structures with the highest efficiency in avoiding spatial
dispersion are shown in figures 5(a) and 7(a). CST Microwave

Studio was used to perform finite integrations of Maxwell’s
equations and calculate the band structures and the reflection
coefficients of the following structures.

For the structure shown in figure 5, cubes were introduced
at the joints of the wires. However, this shortens the wires,
causing the plasma frequency to increase (i.e. mwires

eff >

mcube+wires
eff ). The effect of spatial dispersion on the longitudinal

mode varies with the dimensions of the cube, as shown in
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Figure 7. (a) The wire mesh with plates at the mid-points between the joints, (b) α1 and α2 coefficients are plotted against the dimensions of
the plates, where x is the side of the square plates, a is the lattice constant, (c) the band structure for r :x:a = 0.01:0.36:1 (wire’s radius):(side
of square plate):(lattice constant) (where (0, 0, 0), X(0, 0, π/a), M(0, π/a, π/a), R(π/a, π/a, π/a)).

figure 5 expressed with α1 and α2 coefficients. Finally, the
two degenerate quadrupole modes, appear at much higher
frequencies (∼49 GHz).

Another, more efficient way, to increase the capacitance
of the wire mesh, is to introduce thin square plates at
the mid-points between the joints of the wires, as shown
in figure 7(a). The thin plates have the advantage of
dramatically increasing the capacitance of the system, without
affecting the plasma behaviour of the wire medium. From
figures 7(b) and (c), it can be seen that the dispersion of
the longitudinal mode is dramatically reduced, indicating
that the longitudinal permittivity element does not depend
on the spatial components of the wavevector. The effect of
spatial dispersion for the longitudinal mode depends on the
dimensions of the plates introduced on the structures (see
figure 7(b)). Finally, the two quadrupole degenerate modes
are seen at lower frequencies (∼25 GHz).These two modes are
also flat (i.e. the group velocity is zero: dω

dq = 0), and therefore
they do not propagate in the medium either, but they create
additional surface plasmons at the interface between air and
the wire medium.

For both structures (shown in figures 5(a) and 7(a)), the
reflection coefficient was calculated for a finite slab of five unit
cells (i.e. d = 5 N) and the results are plotted in figures 6
and 8 respectively. Simulations were performed for perfectly
conducting wires in free space, where losses were ignored
and in a slightly lossy dielectric hosting medium (in order to
simulate a real hosting material). The lossy hosting medium
has a permittivity tensor of the form ε = ε′ + iε′′ = ε0[1 +
iσ/(ωε0)], where σ and ω are the conductivity of the hosting
medium and the frequency of the wave respectively and real
permittivity ε′ = 1. CST accepts values for the conductivity of

the hosting medium and it was chosen to be σ = 0.111 S m−1,
giving an imaginary permittivity ε′′ ≈ 0.1 at 20 GHz.

The reflection coefficients are plotted in figures 6 and 8 for
the structures shown in figures 5(a) and 7(a) respectively. The
longitudinal mode is excited for the P-polarized wave and for
non-normal angles of incidence, giving sharp resonances for
a loss-free hosting medium. However, for a real system, that
is slightly lossy, these resonances are absorbed, meaning that
the flat modes cannot propagate in the medium. These modes
are now creating surface plasmons at the interface between the
wire medium and a dielectric. Therefore, these wire structures
can be effectively described by one local permittivity tensor
each.

For both structures, the two spatial dispersion coefficients
(α1, α2) are negligibly small (α1 = −0.049, α2 = −0.045 and
β = 1.24 for the x/a = 0.5 for the structure in figure 5(a)
and α1 → 0, α2 = 0.04 and β = 1.04 for the x/a = 0.36
for the structure in figure 7(a)), and therefore the loss-free wire
structure can be modelled with one local permittivity tensor,
given by:

ε = β

(
1 − ω2

p

ω2
0

)
(29)

and when losses are present, the general form of the Drude
model applies where:

ε = ε1 − �2

ω(ω + iγ )
(30)

where � = ωp
√

ε1, γ represents the resistivity losses in the
system, and ε1 is a constant. Therefore, for a finite slab, the
scattering parameters for a P- and a S-polarized wave can be
calculated according to Pendry’s work in [15]. Note that for

7
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Figure 8. The modulus of the reflection coefficient for the structure shown in figure 7. Both the S-polarized (dashed line) and the P-polarized
waves (full line) are shown for various angles of incidence. Also, the reflection coefficient was calculated for both a loss-free hosting medium
(top graphs) and a lossy medium in order to simulate a real material (bottom graphs).

normal incidence, q ′
z = √

εqz for the S-polarized wave and
q ′

z = qz for the P-polarized wave.

RP = ε − 1

ε + 1
+ 4ε(1 − ε) exp(iqzd)

(ε + 1)
[
(ε + 1)2 − (1 − ε)2 exp(2iqzd)

]

RS =
√

ε − 1√
ε + 1

+ 4
√

ε(
√

ε − 1) exp(iq ′
zd)

(
√

ε + 1)
[
(
√

ε + 1)2 − (
√

ε − 1)2 exp(2iq ′
zd)

]

(31)

where q ′
z is the component of the wavevector inside the

medium, qz is the component of the wavevector outside the
medium, d = Na is the length of the finite slab examined,
N is the number of unit cells used and a the lattice constant.
In figures 6 and 8, the simulation calculations for normal
incidence of the reflection coefficient is plotted with the
analytical predictions from (31) for the two structures. It is
clear that there is significant agreement. However, at high
frequencies the agreement fails due to the band gap of the
transverse mode at ∼30 GHz, which is not predicted from (31).
Also, for higher frequencies, the wavelength becomes small
enough for internal scattering within the structure to take place,
an effect not described by (31), since it assumes a slab of
homogeneous medium.

3.2. Increasing the inductance of the structure

Another way to minimize spatial dispersion in a wire system is
to increase its inductance, by coating the wires with a magnetic
material as shown in figure 9(a). This material enhances

the magnetic and consequently the electric field associated
with the plasma behaviour of the structure, but leaves the
local electrostatic part (i.e. accumulated charge) unaffected.
Therefore, the relative importance of the charge accumulation
in the wires is reduced.

From figures 9(b) and (c), it can be seen that the dispersion
of the longitudinal mode is decreased significantly. The α1 and
α2 coefficients take negligibly small values and therefore the
spatial dependence of the permittivity element can be ignored.
Also, note that β = 1, since no conducting structures were
attached on the wires. Also, note that the plasma frequency
is reduced, since the self-inductance effects causing meff are
enhanced (i.e. mmagn−coat

eff > mwire−mesh
eff ).

For the structure shown in figure 9(a), the reflection
coefficient was calculated for a finite slab of five unit cells
(i.e. d = 5a). Again, simulations were performed for perfectly
conducting wires in free space, where losses were ignored
and in a slightly lossy dielectric hosting medium (in order to
simulate a real hosting material). The lossy hosting medium
has a permittivity tensor of the form ε = ε′ + iε′′ = ε0[1 +
iσ/(ωε0)], with real permittivity ε′ = 1. CST accepts values
for the conductivity and it was chosen to be σ = 0.083 S m−1,
giving an imaginary permittivity ε′′ ≈ 0.1 at 15 GHz.

In figure 10, the reflection coefficient is plotted for
both the loss-free and the lossy hosting dielectric. The
longitudinal and the quadrupole modes are excited for a P-
polarized wave and non-normal angles of incidence, and
they can be seen as sharp resonances for the loss-free
hosting medium. However, these resonances are absorbed
when the hosting medium is slightly lossy, as all real

8
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Figure 9. (a) The magnetically (μ = 5) coated wire-mesh metamaterial, (b) α1 and α2 coefficients plotted against the dimensions of the
coating material, where R is the outer radius of the coating material, a is the lattice constant and for all calculations r/a = 0.01, (c) the band
structure for r :R:a = 0.01:0.04:1 (wire’s radius):(outer radius of the coating material):(lattice constant), (where (0, 0, 0), X(0, 0, π/a),
M(0, π/a, π/a), R(π/a, π/a, π/a)).

Figure 10. The modulus of the reflection coefficient for the structure shown in figure 9. Both the S-polarized (blue dashed line) and the
P-polarized waves (pink full line) are shown for various angles of incidence. Also, the reflection coefficient was calculated for both a loss-free
hosting medium (top graphs) and a lossy medium in order to simulate a real material (bottom graphs).

materials are. Then, it is clear that the longitudinal and
quadrupole modes do not propagate in a real system, but
only the transverse mode propagates, concluding that the
new wire metamaterial can be homogenized by one local
permittivity tensor given by (23). Therefore, by substituting

this permittivity tensor in (31), analytical predictions can
be derived for the reflection coefficient, which is plotted in
figure 10. It is clear that there is significant agreement
between the analytical predictions and the simulation
calculations.
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4. Conclusions

It is known, that a wire-mesh structure has 3D-plasma-like
properties and is used as a negative permittivity metamaterial.
However, the properties of this artificial plasma are strongly
modified by spatial dispersion, which arises from periodic
charge accumulation in the wires for longitudinal waves,
preventing the homogenization of the wire medium by one
local permittivity tensor. Spatial dispersion can be avoided
by attaching conducting structures on the wires and therefore
increasing the capacitance of the wire system or by coating the
wires with a magnetic material, which increases the inductance
of the wire system.

By eliminating spatial dispersion in wire structures, the
longitudinal mode becomes dispersion free and hence is
excluded form propagating in the wire medium. Therefore,
the longitudinal mode (and the quadrupole modes, who are
also dispersion free) create surface plasmons at a wire-
medium/vacuum interface. Finally, since the transverse mode
is the only mode propagating in the medium, these new
wire structures can be homogenized by one effective local
permittivity tensor, identical to the permittivity tensor for the
transverse mode.

Appendix A. Derivation of the non-local permittivity
tensor for the wire-mesh structure

The mean electric field in the wire-mesh structure induced by
an electromagnetic wave is given by (14) and the deviation
from the average electric field at the surface of an x-wire
by (15).

Now, by adding a new source term (i.e. J0), the electric
field at the wires (which should always be zero, since perfect
electric conducting wires are considered) is given by:

Ex − 	Ex = iωμ0( j0x + J0x) − iqx
(j0+J0)·q

ε0ω

(q2 − k2
0)a

2
−

√
μ0

ε0

i

k2
pa2

×
(

qxq · j0

3k0
− k2

0 j0x

k0

)
= 0 (A.1)

∴ i

a2k0

√
μ0

ε0

[
(k2

0 − q2
x )(J0x + j0x)

(q2 − k2
0)

− (q2
x − 3k2

0) j0x

3k2
p

]
= 0.

(A.2)

If you assume propagation along the x-axis, then for the
longitudinal mode, q = qx x̂, J0 = J0xq and j0 = j0xq are
valid, which leads to a relation between the two sources:

J0x = − j0x

(
q2

x − 3k2
0 + 3k2

p

3k2
p

)
= − j0x − j0x

(
q2

x − 3k2
0

3k2
p

)
.

(A.3)
Therefore, using Maxwell equations, the permittivity tensor for
the longitudinal mode is given by:

εL = ∇D

∇E
= J0x

J0x + j0x
= ε0

(
1 − 3k2

p

3k2
0 − q2

z

)
. (A.4)

Appendix B. Derivation of the non-local reflection
coefficient for a semi-infinite slab of the wire-mesh
medium

Consider a p-polarized wave incident on a semi-infinite slab of
the system shown in figure 2.

Appendix B.1. Reflected fields

The incident and reflected magnetic field is given by:

H = ŷH0 exp(iqx x + iqy y − iωt)
(
eiqz z + Re−iqz z

)
(B.1)

and the electric field can be derived by Maxwell equation and
is given by:
∂ D

∂ t
= ∇ × H ⇒ E = − 1

iε0ω
∇ × H (B.2)

E = H0 exp(iqx x + iqy y − iωt)

[
qzx̂ − qx ẑ

ε0ω
eiqz z

− qzx̂ + qx ẑ

ε0ω
Re−iqz z

]
. (B.3)

Appendix B.2. Transmitted fields

Consider the electric and magnetic fields inside the metamate-
rial (i.e. equations (13) and (14)).

B = iμ0q × j0

(q2 − k2
0)a

2
exp(iqx x + iqy y + iqzz − iωt) (B.4)

E =
[

iωμ0j0 − iq
j0 · q

εω

]
1

(q2 − k2
0)a

2

× exp(iqx x + iqy y + iqzz − iωt). (B.5)

There are two modes that propagate in the wire-mesh medium:
the transverse and the longitudinal mode.

For the longitudinal mode, the dispersion equation is given
by: q2 = 3(k2

0 − k2
p), and the current induced in the wires due

to the longitudinal mode is jL = JL H0qL = JL H0(qLx̂+qzẑ).
Therefore, the magnetic field associated with the longitudinal
mode is:

BL = iμ0qL × jL

(q2 − k2
0)a

2
exp(iqx x + iqy y + iqzz − iωt) = 0 (B.6)

and is equal to zero, since the wavevector is parallel to the
electric field producing the current and therefore the current in
the wires is parallel to the wavevector (i.e. their cross product
is zero). Now, the electric field due to the longitudinal mode is
given by:

EL = iωμ0 JL H0(qLx̂ + qzẑ) − i JL H0q2
L

εω
qL

(q2 − k2
0)a

2

× exp(iqx x + iqy y + iqzz − iωt). (B.7)

Consider for simplicity, the electric field tangential to the
surface (i.e. in the x–y plane), and since the longitudinal
wavevector is always parallel to the electric field (i.e. qL =
qx x̂), the electric field associated with the longitudinal mode
at surface z = 0 is given by:

E x
L = − iωμ0 JL H0qx

k2
0a2

exp(iqx x + iqy y + iqzz − iωt). (B.8)
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For the transverse mode, the dispersion equation is given
by: q2 = k2

0 − k2
p , and the current induced in the wires due to

the transverse mode is jT = JT H0qT = JT H0(qTx̂ + qx ẑ).
Therefore, the magnetic field due to the transverse mode can
be calculated using equation (B.4) and by applying the above
conditions:

HT = − iJT H0(k2
0 − k2

p)ŷ

k2
pa2

exp(iqx x + iqy y + iqzz − iωt)

(B.9)
and the electric field tangential to the surface (i.e. on the x–y
plane) is given by:

E x
T = − iωμ0 JT H0qTz

k2
pa2

exp(iqx x + iqy y + iqzz− iωt). (B.10)

It is required that the current at the surface to be zero.
Therefore, the currents induced from the two modes should
add to zero: jT + jL = −JT H0qT + JL H0qL = 0 and by
considering current flowing in the wires along the z-axis: JL =
JTqx

qLz
Hence, the total magnetic and electric fields transmitted

due to both modes are:

H = − iJT H0(k2
0 − k2

p)

k2
pa2

exp(iqx x + iqy y + iqzz − iωt) (B.11)

Ex = − iωμ0 JT H0

a2

[
q2

x

k2
0qLz

+ qTz

k2
p

]

× exp(iqx x + iqy y + iqzz − iωt). (B.12)

Appendix B.3. Reflection coefficient (R)

Now, by matching the magnetic fields at the surface (z = 0),
the following relation is derived:

1 + R = − iJT(k2
0 − k2

p)

k2
pa2

(B.13)

and by matching the tangential electric fields at the surface of
incidence:

1 − R = − iJTk2
0

a2qz

[
q2

x

k2
0qLz

+ qTz

k2
p

]
. (B.14)

Solving these two equations, the non-local reflection coeffi-
cient can be derived for a semi-infinite slab of a wire-mesh

medium:

R =
qzqLz(k2

0 − k2
p) −

[
qTzqLzk2

0 + q2
x k2

p

]

qzqLz(k2
0 − k2

p) +
[
qTzqLzk2

0 + q2
x k2

p

] . (B.15)
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